function [df,C]=glfdiff0(f,t,gam) % glfdiff0 - evaluation of GL derivatives, not recommended % % dy=glfdiff0(y,t,gam) % % y - the samples of the function handle of the original function % t - the time vector % gam - the fractional order % dy - the fractional-order derivatives, or integrals if gam<0 % Copyright (c) Dingyu Xue, Northeastern University, China % Last modified 28 March, 2017 % Last modified 18 May, 2022 arguments, f(1,:), t(1,:) double, gam(1,1) double, end [f,h,n]=fdiffcom(f,t); J=0:(n-1); a0=f(1); if a0~=0 && gam>0, dy(1)=sign(a0)*Inf; end C=gamma(gam+1)*(-1).^J./gamma(J+1)./gamma(gam-J+1)/h^gam; for i=2:n, dy(i)=C(1:i)*f(i:-1:1); end end