function n=norm(G,eps0) % norm -= norms of an FOTF object % % norm(G), norm(G,inf) % % G - an FOTF object % The 2-norm and infinity-norm of G can be evaluated, respectively % Copyright (c) Dingyu Xue, Northeastern University, China % Last modified 28 March, 2017 % Last modified 18 May, 2022 [n,m]=size(G); if nargin==1, eps0=1e-6; end for i=1:n, for j=1:m, A(i,j)=snorm(G(i,j),eps0); end, end n=norm(A); end % norm of a SISO FOTF object function n=snorm(G,eps0) j=sqrt(-1); if nargin==2 && ~isfinite(eps0) % H infinity norm, find the maximum value f=@(w)-abs(freqresp(j*w,G)); w=fminsearch(f,0); n=abs(freqresp(j*w,G)); else % H2 norm, numerical integration f=@(s)freqresp(s,G).*freqresp(-s,G); n=integral(f,-inf,inf)/(2*pi*j); end end