function gershgorin(H,key) % gershgorin - draw Nyquist plots with Gershgorin bands % % gershgorin(H,key) % % H - the frequency response data in FRD format % key - if key=1, the inverse Nyquist plots are drawn % Copyright (c) Dingyu Xue, Northeastern University, China % Last modified 28 March, 2017 if nargin==1, key=0; end t=[0:.1:2*pi,2*pi]'; [nr,nc]=size(H); nw=nr/nc; ii=1:nc; for i=1:nc, circles{i}=[]; end for k=1:nw % evaluate inverse Nyquist array for the frequencies G=H((k-1)*nc+1:k*nc,:); if nargin==2 && key==1, G=inv(G); end, H1(:,:,k)=G; for j=1:nc, ij=find(ii~=j); v=min([sum(abs(G(ij,j))),sum(abs(G(j,ij)))]); x0=real(G(j,j)); y0=imag(G(j,j)); r=sum(abs(v)); % compute Gershgorin circles radius circles{j}=[circles{j} x0+r*cos(t)+sqrt(-1)*(y0+r*sin(t))]; end, end hold off; nyquist(tf(zeros(nc)),'w'); hold on; h=get(gcf,'child'); h0=h(end:-1:2); for i=ii, for j=ii axes(h0((j-1)*nc+i)); NN=H1(i,j,:); NN=NN(:); if i==j % diagonal plots with Gershgorin circles cc=circles{i}(:); x1=min(real(cc)); x2=max(real(cc)); y1=min(imag(cc)); y2=max(imag(cc)); plot(NN) plot(circles{i}), plot(0,0,'+'), axis([x1,x2,y1,y2]) else, plot(NN), end % non-diagonal elements end, end, hold off if key==1, title('Inverse Nyquist Diagram'); end