function dy=glfdiff9(y,t,gam,p) % glfdiff9 - evaluation of O(h^p) GL derivatives, recommended % % dy=glfdiff9(y,t,gam,p) % % y - the samples of the function handle of the original function % t - the time vector % gam - the fractional order % p - the order for the precision setting % dy - the fractional-order derivatives, or integrals if gam<0 % Copyright (c) Dingyu Xue, Northeastern University, China % Last modified 28 March, 2017 % Last modified 18 May, 2022 arguments, y(:,1), t(:,1) double, gam(1,1) double p(1,1){mustBePositiveInteger}=5 end [y,h,n]=fdiffcom(y,t); u=0; du=0; r=(0:p)*h; R=sym(fliplr(vander(r))); c=double(R)\y(1:p+1); for i=1:p+1, u=u+c(i)*t.^(i-1); du=du+c(i)*t.^(i-1-gam)*gamma(i)/gamma(i-gam); end v=y-u; g=double(genfunc(p)); w=get_vecw(gam,n,g); for i=1:n, dv(i,1)=w(1:i)*v(i:-1:1)/h^gam; end dy=dv+du; if abs(y(1))<1e-10, dy(1)=0; end end