% Impulse response invariant discretization of fractional order % integrators/differentiators % % irid_fod function is prepared to compute a discrete-time finite dimensional % (z) transfer function to approximate a continuous irrational transfer % function s^r, where "s" is the Laplace transform variable, and "r" is a % real number in the range of (-1,1). s^r is called a fractional order % differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0. % % The proposed approximation keeps the impulse response "invariant" % % IN: % r: the fractional order % Ts: the sampling period % norder: the finite order of the approximate z-transfer function % (the orders of denominator and numerator z-polynomial are the same) % OUT: % sr: returns the LTI object that approximates the s^r in the sense % of impulse response. % TEST CODE % dfod=irid_fod(-.5,.01,5);figure;pzmap(dfod) % % Reference: YangQuan Chen. "Impulse-invariant and step-invariant % discretization of fractional order integrators and differentiators". % August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar. % http://fractionalcalculus.googlepages.com/ % -------------------------------------------------------------------- % YangQuan Chen, Ph.D, Associate Professor and Graduate Coordinator % Department of Electrical and Computer Engineering, % Director, Center for Self-Organizing and Intelligent Systems (CSOIS) % Utah State University, 4120 Old Main Hill, Logan, UT 84322-4120, USA % E: yqchen@ece.usu.edu or yqchen@ieee.org, T/F: 1(435)797-0148/3054; % W: http://www.csois.usu.edu or http://yangquan.chen.googlepages.com % -------------------------------------------------------------------- % % 9/5/2009 % function [sr]=irid_fod(r,Ts,norder) if nargin<3; norder=5; end % if Ts < 0 , sprintf('%s','Sampling period has to be positive'), return, end % if abs(r)>=1, sprintf('%s','The fractional order should be less than 1.'), return, end % if norder<2, sprintf('%s','The order of the approximate transfer function has to be greater than 1'), return, end % L=200; %number of points of the impulse response function h(n) Taxis=[0:L-1]*Ts; r0=r; r=abs(r); ha0=(7*Ts/8)^r; n=1:L-1; h=[ha0, (Ts^r)*(n.^(r-1))/gamma(r)]; [b,a]=prony(h,norder,norder); sr=tf(b,a,Ts);if r0>0, sr=1/sr; r=-r0; end if 1 % change this to 0 if you do not want to see plots % approximated h() wmax0=2*pi/Ts/2; % rad./sec. Nyquist frequency if r0>0, hhat=impulse(1/sr,Taxis); else, hhat=impulse(sr,Taxis); end % figure;plot(Taxis,hhat,'r');hold on;plot(Taxis,h,'ok') % xlabel('time');ylabel('impulse response'); legend(['true for 1/s^{',num2str(abs(r)),'}'],'approximated') % figure; wmax=floor(1+ log10(wmax0) ); wmin=wmax-5; w=logspace(wmin,wmax,1000); srfr=(j*w).^(-r); % subplot(2,1,1) % semilogx(w,20*log10(abs(srfr)),'r');grid on % hold on; srfrhat=freqresp(sr,w); %semilogx(w,20*log10(abs(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('dB'); % legend('true mag. Bode','approximated mag. Bode') % subplot(2,1,2) % semilogx(w,(180/pi) * (angle(srfr)),'r');grid on;hold on % semilogx(w,(180/pi) * (angle(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('degree'); % legend('true phase Bode','approximated Phase Bode') end % if 1