% Step response invariant discretization of fractional order integrators % % srid_fod function is prepared to compute a discrete-time finite dimensional % (z) transfer function to approximate a continuous-time fractional order % integrator/differentiator function s^r, where "s" is the Laplace transform variable, and "r" is a % real number in the range of (-1,1). s^r is called a fractional order % differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0. % % The proposed approximation keeps the step response "invariant" % % IN: % r: the fractional order % Ts: the sampling period % norder: the finite order of the approximate z-transfer function % (the orders of denominator and numerator z-polynomial are the same) % OUT: % sr: returns the LTI object that approximates the s^r in the sense % of step response. % TEST CODE % dfod=srid_fod(-.5,.01,5);figure;pzmap(dfod) % % Reference: YangQuan Chen. "Impulse-invariant and step-invariant % discretization of fractional order integrators and differentiators". % August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar. % http://fractionalcalculus.googlepages.com/ % -------------------------------------------------------------------- % YangQuan Chen, Ph.D, Associate Professor and Graduate Coordinator % Department of Electrical and Computer Engineering, % Director, Center for Self-Organizing and Intelligent Systems (CSOIS) % Utah State University, 4120 Old Main Hill, Logan, UT 84322-4120, USA % E: yqchen@ece.usu.edu or yqchen@ieee.org, T/F: 1(435)797-0148/3054; % W: http://www.csois.usu.edu or http://yangquan.chen.googlepages.com % -------------------------------------------------------------------- % % 9/6/2009 % Only supports when r in (-1,0). That is fractional order integrator % To get fractional order differentiator, use 1/sr. % % See also irid_fod.m at % http://www.mathworks.com/matlabcentral/files/21342/irid_fod.m function [sr]=srid_fod(r,Ts,norder) if nargin<3; norder=5; end if Ts < 0 , sprintf('%s','Sampling period has to be positive'), return, end if r>=0 | r<= -1, sprintf('%s','The fractional order should be in (-1,0)'), return, end if norder<2, sprintf('%s','The order of the approximate transfer function has to be greater than 1'), return, end % L=200; %number of points of the step response function h(n) Taxis=[0:L-1]*Ts;r0=r;r=abs(r);n=0:L-1;h=[(Ts^r)*(n.^(r))/gamma(r)/r]; [b,a] = stmcb(h,ones(size(h)),norder,norder,100);sr=tf(b,a,Ts); % Note that the generated "sr" LTI object might be nonminimum phase! % although a good fitting is obtained if 1 % change this to 0 if you do not want to see plots % approximated h() wmax0=2*pi/Ts/2; % rad./sec. Nyquist frequency hhat=step(sr,Taxis); % figure;plot(Taxis,hhat,'r');hold on;plot(Taxis,h,'ok') % xlabel('time');ylabel('step response'); legend(['approximated for 1/s^{',num2str(abs(r)),'}'],'true') % figure; wmax=floor(1+ log10(wmax0) ); wmin=wmax-5; w=logspace(wmin,wmax,1000); srfr=(j*w).^(-r); % subplot(2,1,1) % semilogx(w,20*log10(abs(srfr)),'r');grid on % hold on; srfrhat=freqresp(sr,w); %semilogx(w,20*log10(abs(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('dB'); % legend('true mag. Bode','approximated mag. Bode') % subplot(2,1,2) % semilogx(w,(180/pi) * (angle(srfr)),'r');grid on;hold on % semilogx(w,(180/pi) * (angle(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('degree'); % legend('true phase Bode','approximated Phase Bode') % figure;pzmap(sr) end % if 1 % get stable, minimum phase approximation. [zz,pp,kk]=zpkdata(sr,'v'); for i=1:norder; if abs(zz(i)) > 1 kk=kk*(-zz(i)); zz(i)=1/zz(i); sprintf('%s','nonminimum phase approximation - forced minimum phase!!'), end if abs(pp(i)) > 1 kk=kk/(-pp(i)); pp(i)=1/pp(i); sprintf('%s','unstable approximation - forced stable!!'), end end sr1=zpk(zz,pp,kk,Ts); if 1 % change this to 0 if you do not want to see plots % approximated h() wmax0=2*pi/Ts/2; % rad./sec. Nyquist frequency hhat=step(sr1,Taxis); % figure;plot(Taxis,hhat,'r');hold on;plot(Taxis,h,'ok') % xlabel('time');ylabel('step response'); legend(['approximated for 1/s^{',num2str(abs(r)),'}'],'true') % figure; wmax=floor(1+ log10(wmax0) ); wmin=wmax-5; w=logspace(wmin,wmax,1000); srfr=(j*w).^(-r); % subplot(2,1,1) % semilogx(w,20*log10(abs(srfr)),'r');grid on % hold on; srfrhat=freqresp(sr1,w); %semilogx(w,20*log10(abs(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('dB'); % legend('true mag. Bode','approximated mag. Bode') % subplot(2,1,2) % semilogx(w,(180/pi) * (angle(srfr)),'r');grid on;hold on % semilogx(w,(180/pi) * (angle(reshape(srfrhat, 1000, 1))),'k');grid on % xlabel('frequency in Hz');ylabel('degree'); % legend('true phase Bode','approximated Phase Bode') % figure;pzmap(sr1) end % if 1