init
This commit is contained in:
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.formatting.provider": "black"
|
||||
}
|
13
ans.csv
Normal file
13
ans.csv
Normal file
@ -0,0 +1,13 @@
|
||||
脏的数量0-100,越大越脏;脏的类型0-100,越大油脂越多
|
||||
脏的数量,脏的类型,清洗时间/min
|
||||
0.00,0.00,10.00,10.00,10.00
|
||||
10.00,10.00,17.14,16.85,15.59
|
||||
50.00,10.00,22.00,21.92,22.41
|
||||
10.00,50.00,30.00,30.00,30.00
|
||||
50.00,50.00,30.00,30.00,30.00
|
||||
10.00,70.00,34.29,34.28,34.19
|
||||
50.00,70.00,34.00,33.96,34.19
|
||||
70.00,10.00,24.29,24.78,26.13
|
||||
70.00,50.00,34.00,33.96,34.19
|
||||
70.00,70.00,38.89,38.81,38.78
|
||||
100.00,100.00,50.00,50.00,50.00
|
|
200
洗衣机.py
Normal file
200
洗衣机.py
Normal file
@ -0,0 +1,200 @@
|
||||
from enum import Enum
|
||||
from functools import reduce
|
||||
from scipy import integrate
|
||||
import itertools
|
||||
|
||||
DELIMETER = ","
|
||||
|
||||
|
||||
class DirtType(Enum):
|
||||
Greasy = 0
|
||||
Medium = 1
|
||||
NotGreasy = 2
|
||||
|
||||
def membership_grade(self, dirtness: float) -> float:
|
||||
if self is DirtType.NotGreasy:
|
||||
return max(0, 1 - 1 / 50 * dirtness)
|
||||
elif self is DirtType.Medium:
|
||||
if dirtness < 50:
|
||||
return 1 / 50 * dirtness
|
||||
else:
|
||||
return 2 - 1 / 50 * dirtness
|
||||
else:
|
||||
return max(0, 1 / 50 * (dirtness - 50))
|
||||
|
||||
@classmethod
|
||||
def membership_grades(cls, dirness: float) -> dict["DirtType", float]:
|
||||
ans = {}
|
||||
for v in cls:
|
||||
ans[v] = v.membership_grade(dirness)
|
||||
return ans
|
||||
|
||||
|
||||
class DirtQuality(Enum):
|
||||
Small = 0
|
||||
Medium = 1
|
||||
Large = 2
|
||||
|
||||
def membership_grade(self, type_of_dirt: float) -> float:
|
||||
if self is DirtQuality.Small:
|
||||
return max(0, 1 - 1 / 50 * type_of_dirt)
|
||||
elif self is DirtQuality.Medium:
|
||||
if type_of_dirt < 50:
|
||||
return 1 / 50 * type_of_dirt
|
||||
else:
|
||||
return 2 - 1 / 50 * type_of_dirt
|
||||
else:
|
||||
return max(0, 1 / 50 * (type_of_dirt - 50))
|
||||
|
||||
@classmethod
|
||||
def membership_grades(cls, dirness: float) -> dict["DirtQuality", float]:
|
||||
ans = {}
|
||||
for v in cls:
|
||||
ans[v] = v.membership_grade(dirness)
|
||||
return ans
|
||||
|
||||
|
||||
class WashTime(Enum):
|
||||
VS = 0
|
||||
S = 1
|
||||
M = 2
|
||||
L = 3
|
||||
VL = 4
|
||||
|
||||
def reverse_membership_grade(self) -> float:
|
||||
v = [10, 20, 30, 40, 50]
|
||||
return v[self.value]
|
||||
|
||||
def membership_grade(self, wash_time: float) -> float:
|
||||
fns = {
|
||||
WashTime.VS: lambda t: min(1 / 10 * t, -1 / 10 * (t - 20)),
|
||||
WashTime.S: lambda t: min(1 / 10 * (t - 10), -1 / 10 * (t - 30)),
|
||||
WashTime.M: lambda t: min(1 / 10 * (t - 20), -1 / 10 * (t - 40)),
|
||||
WashTime.L: lambda t: min(1 / 10 * (t - 30), -1 / 10 * (t - 50)),
|
||||
WashTime.VL: lambda t: min(1 / 10 * (t - 40), -1 / 10 * (t - 60)),
|
||||
}
|
||||
return max(0, fns[self](wash_time))
|
||||
|
||||
|
||||
class Rule:
|
||||
def __init__(
|
||||
self, dirtness: DirtQuality, type_of_dirt: DirtType, wash_time: WashTime
|
||||
) -> None:
|
||||
self.dirtness = dirtness
|
||||
self.type_of_dirt = type_of_dirt
|
||||
self.wash_time = wash_time
|
||||
|
||||
def rule_support(self, dirtness: float, type_of_dirt: float) -> float:
|
||||
# 计算隶属度
|
||||
dirtness_grade = self.dirtness.membership_grade(dirtness)
|
||||
type_of_dirt_grade = self.type_of_dirt.membership_grade(type_of_dirt)
|
||||
# 计算t范数 min
|
||||
return min(dirtness_grade, type_of_dirt_grade)
|
||||
|
||||
|
||||
class InferenceEngine:
|
||||
def __init__(self, rules: list[Rule]) -> None:
|
||||
self.rules = rules
|
||||
|
||||
def output(
|
||||
self, dirtness: float, type_of_dirt: float
|
||||
) -> list[tuple[float, WashTime]]:
|
||||
# 使用规则
|
||||
ans = map(
|
||||
lambda rule: (rule.rule_support(dirtness, type_of_dirt), rule.wash_time),
|
||||
self.rules,
|
||||
)
|
||||
ans = list(ans)
|
||||
return ans
|
||||
|
||||
|
||||
# 聚合模糊输出,使用离散的质心计算方式,数学积
|
||||
def aggregate_discret_AP(pairs: list[tuple[float, WashTime]]) -> float:
|
||||
return sum(
|
||||
map(lambda pair: pair[0] * pair[1].reverse_membership_grade(), pairs)
|
||||
) / sum(map(lambda pair: pair[0], pairs))
|
||||
|
||||
|
||||
# 使用连续的质心计算方式,数学积和代数和
|
||||
def aggregate_continue_AP(pairs: list[tuple[float, WashTime]]) -> float:
|
||||
def f(time: float) -> float:
|
||||
return S_AS(map(lambda pair: pair[0] * pair[1].membership_grade(time), pairs))
|
||||
|
||||
base = integrate.quad(f, 0, 60)[0]
|
||||
return integrate.quad(lambda v: v * f(v), 0, 60)[0] / base
|
||||
|
||||
|
||||
def S_AS(iter) -> float:
|
||||
"代数和,输入数组"
|
||||
ans = 0
|
||||
iter = tuple(iter)
|
||||
for i in range(len(iter)):
|
||||
n = i + 1
|
||||
if n & 1:
|
||||
flag = 1
|
||||
else:
|
||||
flag = -1
|
||||
# 选择n个数,相乘再相加
|
||||
for collection in itertools.combinations(iter, n):
|
||||
ans += flag * reduce(lambda x, y: x * y, collection)
|
||||
return ans
|
||||
|
||||
|
||||
# 标准交
|
||||
def aggregate_continue_SI(pairs: list[tuple[float, WashTime]]) -> float:
|
||||
"""lambda: fi=min(alpha, mu), f=max(fi)"""
|
||||
|
||||
def f(time: float) -> float:
|
||||
return max(
|
||||
map(lambda pair: min(pair[0], pair[1].membership_grade(time)), pairs)
|
||||
)
|
||||
|
||||
return integrate.quad(lambda v: v * f(v), 0, 60)[0] / integrate.quad(f, 0, 60)[0]
|
||||
|
||||
|
||||
rules = [
|
||||
Rule(DirtQuality.Small, DirtType.Greasy, WashTime.L),
|
||||
Rule(DirtQuality.Medium, DirtType.Greasy, WashTime.L),
|
||||
Rule(DirtQuality.Large, DirtType.Greasy, WashTime.VL),
|
||||
Rule(DirtQuality.Small, DirtType.Medium, WashTime.M),
|
||||
Rule(DirtQuality.Medium, DirtType.Medium, WashTime.M),
|
||||
Rule(DirtQuality.Large, DirtType.Medium, WashTime.L),
|
||||
Rule(DirtQuality.Small, DirtType.NotGreasy, WashTime.VS),
|
||||
Rule(DirtQuality.Medium, DirtType.NotGreasy, WashTime.S),
|
||||
Rule(DirtQuality.Large, DirtType.NotGreasy, WashTime.S),
|
||||
]
|
||||
|
||||
inputs = [
|
||||
[0, 0],
|
||||
[10, 10],
|
||||
[50, 10],
|
||||
[10, 50],
|
||||
[50, 50],
|
||||
[10, 70],
|
||||
[50, 70],
|
||||
[70, 10],
|
||||
[70, 50],
|
||||
[70, 70],
|
||||
[100, 100],
|
||||
]
|
||||
|
||||
|
||||
def main(inputs, rules):
|
||||
print("脏的数量0-100,越大越脏;脏的类型0-100,越大油脂越多")
|
||||
print(DELIMETER.join(["脏的数量", "脏的类型", "清洗时间/min"]))
|
||||
engine = InferenceEngine(rules)
|
||||
for input in inputs:
|
||||
# print("脏的程度", input[0], "脏的类型", input[1])
|
||||
outputs = engine.output(input[0], input[1])
|
||||
output = aggregate_discret_AP(outputs)
|
||||
output1 = aggregate_continue_AP(outputs)
|
||||
output2 = aggregate_continue_SI(outputs)
|
||||
print(
|
||||
DELIMETER.join(["{:.2f}"] * 5).format(
|
||||
input[0], input[1], output, output1, output2
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(inputs, rules)
|
Reference in New Issue
Block a user