This commit is contained in:
fanyq 2022-12-20 21:06:20 +08:00
commit 5593c9fa14
3 changed files with 216 additions and 0 deletions

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"python.formatting.provider": "black"
}

13
ans.csv Normal file
View File

@ -0,0 +1,13 @@
脏的数量0-100越大越脏脏的类型0-100越大油脂越多
脏的数量,脏的类型,清洗时间/min
0.00,0.00,10.00,10.00,10.00
10.00,10.00,17.14,16.85,15.59
50.00,10.00,22.00,21.92,22.41
10.00,50.00,30.00,30.00,30.00
50.00,50.00,30.00,30.00,30.00
10.00,70.00,34.29,34.28,34.19
50.00,70.00,34.00,33.96,34.19
70.00,10.00,24.29,24.78,26.13
70.00,50.00,34.00,33.96,34.19
70.00,70.00,38.89,38.81,38.78
100.00,100.00,50.00,50.00,50.00
1 脏的数量0-100,越大越脏;脏的类型0-100,越大油脂越多
2 脏的数量,脏的类型,清洗时间/min
3 0.00,0.00,10.00,10.00,10.00
4 10.00,10.00,17.14,16.85,15.59
5 50.00,10.00,22.00,21.92,22.41
6 10.00,50.00,30.00,30.00,30.00
7 50.00,50.00,30.00,30.00,30.00
8 10.00,70.00,34.29,34.28,34.19
9 50.00,70.00,34.00,33.96,34.19
10 70.00,10.00,24.29,24.78,26.13
11 70.00,50.00,34.00,33.96,34.19
12 70.00,70.00,38.89,38.81,38.78
13 100.00,100.00,50.00,50.00,50.00

200
洗衣机.py Normal file
View File

@ -0,0 +1,200 @@
from enum import Enum
from functools import reduce
from scipy import integrate
import itertools
DELIMETER = ","
class DirtType(Enum):
Greasy = 0
Medium = 1
NotGreasy = 2
def membership_grade(self, dirtness: float) -> float:
if self is DirtType.NotGreasy:
return max(0, 1 - 1 / 50 * dirtness)
elif self is DirtType.Medium:
if dirtness < 50:
return 1 / 50 * dirtness
else:
return 2 - 1 / 50 * dirtness
else:
return max(0, 1 / 50 * (dirtness - 50))
@classmethod
def membership_grades(cls, dirness: float) -> dict["DirtType", float]:
ans = {}
for v in cls:
ans[v] = v.membership_grade(dirness)
return ans
class DirtQuality(Enum):
Small = 0
Medium = 1
Large = 2
def membership_grade(self, type_of_dirt: float) -> float:
if self is DirtQuality.Small:
return max(0, 1 - 1 / 50 * type_of_dirt)
elif self is DirtQuality.Medium:
if type_of_dirt < 50:
return 1 / 50 * type_of_dirt
else:
return 2 - 1 / 50 * type_of_dirt
else:
return max(0, 1 / 50 * (type_of_dirt - 50))
@classmethod
def membership_grades(cls, dirness: float) -> dict["DirtQuality", float]:
ans = {}
for v in cls:
ans[v] = v.membership_grade(dirness)
return ans
class WashTime(Enum):
VS = 0
S = 1
M = 2
L = 3
VL = 4
def reverse_membership_grade(self) -> float:
v = [10, 20, 30, 40, 50]
return v[self.value]
def membership_grade(self, wash_time: float) -> float:
fns = {
WashTime.VS: lambda t: min(1 / 10 * t, -1 / 10 * (t - 20)),
WashTime.S: lambda t: min(1 / 10 * (t - 10), -1 / 10 * (t - 30)),
WashTime.M: lambda t: min(1 / 10 * (t - 20), -1 / 10 * (t - 40)),
WashTime.L: lambda t: min(1 / 10 * (t - 30), -1 / 10 * (t - 50)),
WashTime.VL: lambda t: min(1 / 10 * (t - 40), -1 / 10 * (t - 60)),
}
return max(0, fns[self](wash_time))
class Rule:
def __init__(
self, dirtness: DirtQuality, type_of_dirt: DirtType, wash_time: WashTime
) -> None:
self.dirtness = dirtness
self.type_of_dirt = type_of_dirt
self.wash_time = wash_time
def rule_support(self, dirtness: float, type_of_dirt: float) -> float:
# 计算隶属度
dirtness_grade = self.dirtness.membership_grade(dirtness)
type_of_dirt_grade = self.type_of_dirt.membership_grade(type_of_dirt)
# 计算t范数 min
return min(dirtness_grade, type_of_dirt_grade)
class InferenceEngine:
def __init__(self, rules: list[Rule]) -> None:
self.rules = rules
def output(
self, dirtness: float, type_of_dirt: float
) -> list[tuple[float, WashTime]]:
# 使用规则
ans = map(
lambda rule: (rule.rule_support(dirtness, type_of_dirt), rule.wash_time),
self.rules,
)
ans = list(ans)
return ans
# 聚合模糊输出,使用离散的质心计算方式,数学积
def aggregate_discret_AP(pairs: list[tuple[float, WashTime]]) -> float:
return sum(
map(lambda pair: pair[0] * pair[1].reverse_membership_grade(), pairs)
) / sum(map(lambda pair: pair[0], pairs))
# 使用连续的质心计算方式,数学积和代数和
def aggregate_continue_AP(pairs: list[tuple[float, WashTime]]) -> float:
def f(time: float) -> float:
return S_AS(map(lambda pair: pair[0] * pair[1].membership_grade(time), pairs))
base = integrate.quad(f, 0, 60)[0]
return integrate.quad(lambda v: v * f(v), 0, 60)[0] / base
def S_AS(iter) -> float:
"代数和,输入数组"
ans = 0
iter = tuple(iter)
for i in range(len(iter)):
n = i + 1
if n & 1:
flag = 1
else:
flag = -1
# 选择n个数相乘再相加
for collection in itertools.combinations(iter, n):
ans += flag * reduce(lambda x, y: x * y, collection)
return ans
# 标准交
def aggregate_continue_SI(pairs: list[tuple[float, WashTime]]) -> float:
"""lambda: fi=min(alpha, mu), f=max(fi)"""
def f(time: float) -> float:
return max(
map(lambda pair: min(pair[0], pair[1].membership_grade(time)), pairs)
)
return integrate.quad(lambda v: v * f(v), 0, 60)[0] / integrate.quad(f, 0, 60)[0]
rules = [
Rule(DirtQuality.Small, DirtType.Greasy, WashTime.L),
Rule(DirtQuality.Medium, DirtType.Greasy, WashTime.L),
Rule(DirtQuality.Large, DirtType.Greasy, WashTime.VL),
Rule(DirtQuality.Small, DirtType.Medium, WashTime.M),
Rule(DirtQuality.Medium, DirtType.Medium, WashTime.M),
Rule(DirtQuality.Large, DirtType.Medium, WashTime.L),
Rule(DirtQuality.Small, DirtType.NotGreasy, WashTime.VS),
Rule(DirtQuality.Medium, DirtType.NotGreasy, WashTime.S),
Rule(DirtQuality.Large, DirtType.NotGreasy, WashTime.S),
]
inputs = [
[0, 0],
[10, 10],
[50, 10],
[10, 50],
[50, 50],
[10, 70],
[50, 70],
[70, 10],
[70, 50],
[70, 70],
[100, 100],
]
def main(inputs, rules):
print("脏的数量0-100越大越脏脏的类型0-100越大油脂越多")
print(DELIMETER.join(["脏的数量", "脏的类型", "清洗时间/min"]))
engine = InferenceEngine(rules)
for input in inputs:
# print("脏的程度", input[0], "脏的类型", input[1])
outputs = engine.output(input[0], input[1])
output = aggregate_discret_AP(outputs)
output1 = aggregate_continue_AP(outputs)
output2 = aggregate_continue_SI(outputs)
print(
DELIMETER.join(["{:.2f}"] * 5).format(
input[0], input[1], output, output1, output2
)
)
if __name__ == "__main__":
main(inputs, rules)